🧠
Calculate accuracy
After learn your model you should calculate model accuracy
python
import pandas as pdfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import accuracy_scoremissing_values = ["n/a", "na", "--"]df = pd.read_csv("Video_Games_Sales_as_at_22_Dec_2016.csv", na_values=missing_values)X = df.drop(columns=["Platform","Name","Genre","Publisher", "Developer","Rating"])Y = df["Genre"]median_Critic_Score = df['Critic_Score'].median()median_Critic_Count = df['Critic_Count'].median()median_User_Score = df['User_Score'].median()median_User_Count = df['User_Count'].median()X['Critic_Score'].fillna(median_Critic_Score, inplace=True)X['Critic_Count'].fillna(median_Critic_Count, inplace=True)X['User_Score'].fillna(median_User_Score, inplace=True)X['User_Count'].fillna(median_User_Count, inplace=True)X['Year_of_Release'].fillna(2006.0, inplace=True)Y.fillna("Sports", inplace=True)X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)model = DecisionTreeClassifier()model.fit(X_train,Y_train)per = model.predict(X_test)score = accuracy_score(Y_test, per)print(score)
output
0.222188995215311
